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This paper extends the theta prediction methodology so that life predictions for materials
operating under long service conditions can be made that also have a degree of confidence
associated with them. Ways in which this model can be applied to the fatigue as well as the
creep of all materials is also discussed. For comparison purposes two failure criteria are
built into the stochastic model and the determinants of failure derived. This stochastic theta
model is then used to investigate the nature of the creep failure time distribution for the Ti
6.2.4.6 alloy under constant uniaxial conditions. The distributions for each θj were found to
be very different—with only some of them being normally distributed. The others had very
pronounced skews to both the left and right. The empirical distributions for predicted
failure times were also found to have long tails reaching out to higher failure
times—although the failure time distributions were more symmetric when using the
Monkman—Grant failure criteria. For Titanium 6.2.4.6 operating at 773 K and 580 MPa the
chances of failure before 410 hours is 1%. At 480 MPa and 773 K the chances of failure
before 780 hours is 1%. C© 2001 Kluwer Academic Publishers

1. Introduction
Today there are a wide range of materials available for
a designer to choose from and a correspondingly wide
range of properties. Thus medium density polyethylene
plastics are now commonly used in distribution lines for
water and gas, whilst reinforced resins (such as carbon
fibre epoxy) are used at the cold (fan) end of modern
aero engines. Titanium alloys and engineering ceramics
are now extensively used at the high temperature end
of aero engines, whilst low alloy steels are commonly
used for the boiler tubes and pressure vessels associated
with energy conversion.

In many of these applications these materials are ex-
pected to reliably perform a particular function, (i.e.
with low probability of failure), and over quite long pe-
riods of time. Unexpected failures can turn out to be
catastrophic and very expensive and so there is a great
need to be able to extrapolate to longer term service
conditions from short term tests. In this way unplanned
failures can be avoided. Ideally, any such lifing method
should be able to produce a life prediction together with
an estimate of the confidence in that prediction.

Often the mechanisms of failure, such as slow crack
growth in ceramics, stress corrosion in metals, fatigue
crack growth, creep rupture in metals and pressurised
plastics, can be seen to have a deceleration then a steady
state and a final acceleration when plotted on appro-
priate axis. The theta extrapolation model is a general
technique that can be applied whenever this pattern of

damage accumulation exists. The technique has been
extensively applied to the creep of various metals [1–3]
and has proved to be a very effective method for predict-
ing creep life. However, its application to the fatigue of
metals and the creep of plastics and other materials has
been very limited.

The objectives of this paper are therefore three fold.
Currently, the theta model produces either a single life
time prediction (for a particular set of operating condi-
tions) or a partial analysis of the confidence associated
with such a prediction. This confidence interval does
not take into account all the sources of uncertainty as-
sociated with the prediction and it is also based on the
arbitrary assumption of a normal distribution. The main
objective of this paper is therefore to modify the theta
model so as to make it fully stochastic. All the determi-
nants of a life time prediction are given a generalised
gamma distribution (for which the normal distribution
is a special case) and these are then bought together us-
ing a Monte Carlo simulation to produce a distribution
for the life time prediction associated with a particular
operating condition.

The second objective of this paper is to apply this new
stochastic theta model to the creep behaviour of the Ti
6.2.4.6 alloy. Unlike Ti-4Sn-4A1-4Mo-0.5Si (IMI 551)
[4], which must operate at temperatures below 723 K,
both IMI 834 and Ti 6.2.4.6 [5] are capable of operating
in the 773 K to 900 K temperature range. As a result
these alloys are now being used in the manufacture of
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intermediate to high power (as opposed to the tradi-
tional low power role of titanium) compressor disks
and blades for modern aero engines. However, at these
higher operating temperatures, conditions are ideal for
creep at significant rates and so it is very important
to have some understanding of the creep behaviour of
the Ti 6.2.4.6 alloy. As a first step in this direction this
paper concentrates on the uniaxial creep behaviour of
this alloy—with the intention of publishing multiaxial
behaviour in a future paper.

Thirdly, it is hoped that readers of this paper will be
encouraged to apply this technique to the creep of other
materials (particularly plastics) and also to the fatigue of
various materials. Ways in which the theta model can be
applied to fatigue data are therefore briefly discussed.

To achieve these aims the first section of this pa-
per will formulate the stochastic theta projection model
within the context of creep life prediction. In this sec-
tion the theta model is made stochastic by identify-
ing, through the application of some standard statistical
techniques, distributions for the determinants of time
to failure (for example the theta distributions). Monte
Carlo analysis is then used to combine these determi-
nants of failure into an empirical failure time distribu-
tion. A short section then follows which suggests ways
in which this technique could be applied to fatigue data.
The next two sections then illustrate the way in which
this model can be used to predict the uniaxial creep life
of the Ti 6.2.4.6 alloy. Thus the test material and the
test matrix used are described and empirical distribu-
tions for a failure time prediction at two illustrative test
conditions are identified. The major determinants of the
failure time distribution will also be identified in this
section. In a final section conclusions and suggestions
for future research are given.

2. A stochastic θ projection model
The stochastic θ projection technique has four basic
steps. First, there is the experimental stage where uni-
axial constant stress creep curves are measured over a
range of stresses and sometimes temperatures and each
creep curve is given a mathematical form. Second, the
form of these creep curves is projected to other stresses
and temperatures— either within (i.e. interpolation) or
outside (i.e. extrapolation) the original range of test
conditions. Thirdly, predictions for mean creep proper-
ties (such as the average minimum creep rate or average
time to failure) are derived numerically from the pro-
jected creep curves. Finally, Monte Carlo analysis is
used to obtain an empirical distribution for a predicted
creep property, i.e. a creep property prediction together
with a confidence in such a prediction. This rest of this
section is organised into these stages.

2.1. A mathematical form for a measured
creep curve

A single creep curve at steady uniaxial stress τ and
absolute temperature T can be modelled using a general
functional form

εt = η(t, θ1, θ2, . . . , θ j , . . . , θm), (1a)

where η is some non-linear function, εt is the uniaxial
creep strain at time t and θ j are numerical parameters
that can be determined from the experimental creep
curves using a suitable estimation technique.

A variety of different equations have been used in the
past to describe the form of η in Equation 1a [6, 7]. A
more recent and very popular form that has also been
shown to give a good representation (at least for large
strains) of an experimental creep curve [8] is

εt = θ1(1 − e−θ2t ) + θ3(eθ4t − 1) + νt , (1b)

or even more recently [9],

εt = θ1(1 − e−θ2t ) + θ3(eθ4t − 1) + θ5(1 − e−θ6t ) + νt .

(1c)

Equations 1b or 1c can be used to model any process
(such as fatigue crack growth, slow crack growth, stress
corrosion etc.) where damage (e.g strain or crack size)
has a deceleration to a steady state followed by accel-
eration when plotted against some suitable determinant
(such as time or stress intensity). As such the technique
can be applied to various materials undergoing various
mechanical or corrosive attacks.

However, in terms of high temperature deformation
the first term in Equations 1b and 1c describes nor-
mal primary creep and the second term normal tertiary
creep. The third term in Equation 1c is a relatively new
addition and describes early primary behaviour. As sug-
gested in Evans [9], θ5 and θ6 may describe strains that
are not permanent so that θ5(1 − e−θ6t ) may be a sim-
ple description of anelastic behaviour immediately after
loading. It is important to note that the values for θ1 to
θ4 in Equation 1b will not necessarily be the same as
the values for θ1 to θ4 in Equation 1c. In principle this
representation of strain with time can be applied to any
material—metals and plastics alike.

At small strains, the fit of Equation 1b to an experi-
mental creep curves is often very poor, so that for some
materials this equation is an inadequate representation
of creep. However, for such materials [10, 11] the fit of
Equation 1c to the experimental data is very good at low
strains. νt is a random error term that picks up the ex-
perimental errors when measuring strain during a single
creep test. That is, νt results from experimental inad-
equacies such as deficiencies in extensometer design,
transducers, temperature control and other unexplained
effects. These experimental issues inevitably result in
values for νt being correlated with previous values for ν

(e.g. νt−1) and such autocorrelation has to be accounted
for when obtaining estimates for θ j . Again it should be
noted that the values of νt in Equations 1b and 1c are
not the same.

Values for θ j are obtained using the method of max-
imum likelihood [12]. The likelihood function used
assumes that νt is normally distributed with first or-
der autocorrelation. The precise form of this likelihood
function, together with the numerical optimisation pro-
cedures used, are described elsewhere [11] and for this
paper all the required calculations were implemented
within Excel using its Solver Function.
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2.2. Projecting a creep curve
For a series of experimental creep curves obtained un-
der different stress conditions, but at a single tempera-
ture, the θ j are related to stress τ by interpolation func-
tions of the form,

θ j = g j (τ, b j1, b j2, . . . , b jk, . . . , b jp), (2a)

where the g j are some linear or more likely non-linear
functions, j is a subscript identifying θ in Equation 1a
and b jp are constants that need to be determined using a
suitable estimation technique. Equation 2a permits the
projection of θ j to new conditions of stress and hence
the projection of the complete creep curve to those new
conditions. In principle this approach is applicable to
all materials.

The following representation for the function g j in
Equation 2a

ln(θ j ) = bj1 + bj2τ + σ j1wj1, (2b)

has been shown to yield excellent predictions of vari-
ous creep properties including times to moderate and
small strains [1–3] in metals. However, different func-
tional forms may work better in other materials, such
as plastics and ceramics, and this would constitute a
productive area for future research.

σ j1, b j1 and b j2 are parameters requiring estimation
andw j1 is a standardised stochastic error term that picks
up the variation present in θ j between those tests per-
formed on the same material at the same test conditions.
The first two terms on the right hand side of Equation 2b
thus model the variation of θ j with stress, whilst the last
term (σ j1w j1) models the large variation in θ j at un-
changing test conditions, i.e. at a constant stress. This
error, or variation, is likely to be many orders of mag-
nitude larger than the error νt contained within a single
test. w j1 results from microstructural variation from
specimen to specimen and possibly variations stem-
ming from the use of different testing machines.

Before Equation 2b can be used to predict, with un-
certainty built into this prediction, a creep curve shape
at any stress, the nature and properties of w j1 must be
specified and quantified. Here a generalised log gamma
distribution will be used to model the stochastic error
w j1. The generalised log gamma distribution takes the
following form [13],

f (w j1) =
∣∣λ j1

∣∣
�

(
λ−2

j1

)(
λ−2

j1

)λ−2
j1 exp

[
λ−2

j1

(
λ−2

j1 w j1

− exp
(
λ−2

j1 w j1
))]

, (3a)

where f (w j1) is the density function for w j1 and λ j1
is a shape parameter that determines the nature of the
distribution for w j1. � is the gamma function. Notice
that in all cases w j1 is a standardised error defined from
Equation 2b as

w j1 = ln(θ j ) − (b j1 + b j2τ )

σ j1
, (3b)

where σ j1 are scale parameters that standardises the
error w j1. When λ j1 = 0, the w j1 follow symmetric

normal distributions with means of zero and variances
equal to one. Hence it is a standardised error. The
term exp(w j1) is therefore log normally distributed.
This implies that when λ j1 = 0, the ln(θ j )’s follow
normal distributions with means equal to b j1 + b j2τ ,
and variances equal to σ 2

j1 respectively. When λ j1 = 1,
the w j1 follow extreme value distributions which skew
to the left with means equal to − 0.5772 and vari-
ances equal to π2/6. The term exp(w j1) is therefore
Weibull-distributed. This implies that when λ j1 = 1, the
ln(θ j )’s follow extreme value distributions with means
equal to b j1 + b j2τ − 0.5772σ1 j , and variances equal
to (π2σ 2

j1)/6. The exponential and gamma distributions
are also special cases of this generalised distribution.

The advantage of using this distribution is that it en-
compasses, as special cases, a variety of distributions
including, the Exponential, Weibull, Log Normal and
Gamma distributions. As such, a particular type of dis-
tribution is not forced upon the data. Rather, the data
can be used to determine which of all these distributions
best describes the frequency with which various values
for the w j1 are observed at unchanging test conditions.

The best fitting distribution is defined in terms of
the likelihood function, L(w j1, λ j1), which measures
the joint probability of observing each and every w j1
value. That is, the distribution that best describes the
standardised error w1 j is the one with the largest value
for L(w j1, λ j1). This will correspond to a particular
value for λ j1 so that L(w j1, λ j1) will be a function of
λ j1. It is often simpler to work with the log likelihood
function, so that the distribution that best describes w j1
is the one with the largest value for ln L(w j1, λ j1). From
Equation 3a

ln L(w j1, λ j1) = n
[
ln

∣∣λ j1

∣∣ −ln �
(
λ−2

j1

)) + λ−2
j1 ln

(
λ−2

j1

)]
+

n∑
i=1

λ−2
j1

(
λ j1w j1− exp

(
λ j1w j1

))
, (3c)

where n is the number of observations available on
ln(θ j ).

Values for b j1, b j2, σ j1 and λ j1 are therefore those
values which result in ln L(w j1, λ j1) being maximised.
These maximum likelihood estimates are asymptoti-
cally efficient and the distributions for b j1, b j2, σ j1 and
λ j1 are also asymptotically normal. Moreover, because
all the distributions contained within Equation 3a come
from the exponential family, if unbiased minimum vari-
ance estimators exist, these maximum likelihood esti-
mates will be them [12].

Numerical optimisation procedures for maximising
Equation 3c are described elsewhere [14] and for this
paper they were implemented within Excel using its
Solver Function. This procedure estimates not only the
above parameter values but also their standard devia-
tions so that the distributions for all these parameters
are fully quantified by this procedure.

It is assumed in this projection technique that λ j1
and σ j1 are independent of stress. This implies that the
distribution for w j1 can’t be normal at one stress and
weibull at another and that the variability in w1 j , and
thus in ln(θ j ), is independent of stress.
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2.3. Obtaining a mean creep property
prediction

There is more than one way to derive a mean failure
time prediction from the theta model described above.
The traditional approach has been to find that value for
t which satisfies

0 = θ1(1 − e−θ2t ) + θ3(eθ4t − 1) − εF , (4a)

or in the case of a six theta analysis

0 = θ1(1 − e−θ2t ) + θ3(eθ4t − 1) + θ5(1 − e−θ6t ) − εF .

(4b)

In Equations 4a and 4b, εF is the rupture strain that
is in turn related to stress at a single temperature test
condition through the formula

εF = d1 + d2τ + σ2w2, (4c)

or

w2 = εF − (d1 + d2τ )

σ2
, (4d)

where σ2, and d1 to d2 are parameters requiring es-
timation and w2 is a standardised stochastic error that
picks up the variation in εF that is present between a
number of tests performed on the same material at the
same test conditions. Whilst these equations work well
for the creep of metals, other functional forms may be
better for plastics and ceramics. Again for modelling
purposes w2 is given a generalised log gamma distri-
bution

f (w2) = |λ2|
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Values for d1, d2, σ2 and λ2 are again those values which
result in ln L(w2, λ2) being maximised, where

ln L(w2, λ2) = n
[
ln |λ2|− ln �
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2

)) + λ−2
2 ln

(
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2

)]
+
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λ−2
2 (λ2w2 − exp(λ2w2)). (5b)

These maximum likelihood estimates are asymptot-
ically efficient and the distributions for d1, d2, σ2 and
λ2 are also asymptotically normal. Numerical optimi-
sation procedures for maximising Equation 5b are de-
scribed elsewhere [14] and for this paper they were
implemented within Excel using its Solver Function.
This procedure estimates not only the above parameter
values but also their standard deviations so that the dis-
tributions for all these parameters are fully quantified.

A mean value for ln(θ j ) at any stress τ is then given
by

Mean ln(θ j ) = ln(θ̄ j ) = [
b j1 + b j2τ

]
+ σ j1λ

−1
j1

[
�
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λ−2

j1

) − ln
(
λ−2

j1

)]
, (6a)

with ln variances equal to

Variance ln(θ j ) = σ 2
j1λ

−2
j1 � ′(λ−2

j1

)
. (6b)

�(λ−2
j1 ) and � ′(λ−2

j1 ) are the digamma and trigamma
functions respectively and their value depends only on
λ j1. (See Lawless [15] for a formal definition of these
functions). In addition, for negative values of λ j1 the
distribution skews to the right so that −w j1 has a gen-
eralised log gamma distributions with the above means
and variances.

Lawless has also shown that the mean and variance
for θ j is then found from
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where
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Similarly, the mean value for εF is given by

Mean(εF ) = ε̄F = [d1 + d2τ ] + σ2λ
−1
2

[
�

(
λ−2

2

)
− ln

(
λ−2

2

)]
, (6e)

and the variance for εF equals

Variance(εF ) = σ 2
2 λ−2

2 � ′(λ−2
2

)
. (6f)

A prediction for the mean creep curve shape at stress
τ is found by substituting values for θ̄ j obtained from
Equation 6c into

ε̄t = θ̄1(1 − e−θ̄2t ) + θ̄3(eθ̄4t−1) + θ̄5(1 − e−θ̄6t ). (6g)

A prediction of the mean time to failure at any stress
τ is found by substituting values for θ̄ j , obtained from
Equation 6c, and a value ε̄F , as given by Equation 6e,
into

0 = θ̄1(1 − e−θ̄2t ) + θ̄3(eθ̄4t − 1) + θ̄5(1 − e−θ̄6t ) − ε̄F ,

(6h)

and solving for t .
The disadvantage of this approach is that for most

metallic materials εF is not strongly dependant on stress
or temperature. Whilst this tends to lead to errors in fail-
ure time predictions it should be noted that this trans-
mitted error is minimised by the fact that the creep curve
is at its steepest close to the time of failure.

A second approach is to combine the above theta
analysis with the Monkman–Grant relation [16] that
stipulates that the time to failure is inversely propor-
tional to the minimum creep rate εM ,

ln(tF ) = ln(α) + β ln(εM ) + σ3w3; β < 0, (7a)
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where α, β and σ3 are constants that can be estimated
from the test matrix data set using maximum likeli-
hood procedures andw3 is standardised stochastic error.
Again for modelling purposes w3 is given a generalised
log gamma distribution

f (w3) = |λ3|
�

(
λ−2

3
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λ−2

3

)λ−2
3

×exp
[
λ−2

3

(
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3 w3 − exp
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))]

. (7b)

Values for α, β, σ3 and λ3 are again those values which
result in ln L(w3, λ3) being maximised where

ln L(w3, λ3) = n
[
ln |λ3| − ln �
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3

)) + λ−2
3 ln

(
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3

)]
+

n∑
i=1

λ−2
3 (λ3w3 − exp(λ3w3)). (7c)

These maximum likelihood estimates are asymptot-
ically efficient and the distributions for α, β, σ3 and
λ3 are also asymptotically normal. Numerical optimi-
sation procedures for maximising Equation 7c are de-
scribed elsewhere [14] and for this paper they were
implemented within Excel using its Solver Function.
This procedure estimates not only the above parameter
values but also their standard deviations so that the dis-
tributions for all these parameters are fully quantified.

In turn the theta analysis suggests that the minimum
creep rate is given by

ε̇M = −θ1θ2 e−θ2tM + θ3θ4 eθ4tM , (8a)

or if six theta parameters are used, by

ε̇M = −θ1θ2 e−θ2tM + θ3θ4 eθ4tM − θ5θ6 e−θ6tM . (8b)

In each of the above equations tM is the time to min-
imum creep rate. When using four theta parameters

tM = 1

θ2 + θ4
ln

θ1θ
2
2

θ3θ
2
4

, (8c)

and in the case of six theta parameters tM is given by
the value for t that satisfies Equation 8d below

θ1θ
2
2

θ3θ
2
4

et[−θ2−θ4] + θ5θ
2
6

θ3θ
2
4

et[−θ6−θ4] − 1 = 0. (8d)

The mean minimum creep rate, ˙̄εM at any stress τ is
found by replacing θ j in Equations 8a or 8b with the
mean θ j values given by Equation 6c. The mean value
for ln(tF ) therefore equals

Mean ln(tF ) = ln(t̄F ) = [α + β ln(˙̄εM )]

+ σ3λ
−1
3

[
�

(
λ−2

3

) − ln
(
λ−2

3

)]
, (8e)

where ˙̄εM is the mean minimum creep rate at stress τ .
The variance for ln(tF ) is then given by

Variance ln(tF ) = σ 2
3 λ−2

3 � ′(λ−2
3

)
. (8f)

2.4. Obtaining a creep property prediction
with confidence using Monte Carlo
simulation

In the previous section the stochastic variables w j1,
w2 and w3 were modelled as generalised log gamma
distributions whilst the variables α, β, b j1, b j2, d1, d2,
λ1, λ2, λ3, σ j1, σ2 and σ3 were modelled as normal
distributions. These stochastic variables, together with
the stress level are the major determinants of a creep
property prediction.

To go from a mean value prediction of the time to
failure to a distribution of failure times a closer look at
the determinants of time to failure in the two models
specified in the last section is required. In the approach
that uses a rupture strain relation the fundamental deter-
minants of time to failure are b j1 and b j2, σ j1, w j1, d1,
d2, σ2 and w2. In the approach that uses the Monkman–
Grant relation, the fundamental determinants of time to
failure are b j1 and b j2, σ j1, w j1, α, β, σ3 and w3.

More importantly, the above analysis has shown that
these determinants are stochastic and the distributions
identified above for each of these determinants, as quan-
tified using the maximum likelihood method described
above, can be used to compute an empirical failure time
distribution at any stress. In particular, it is required to
sample values from each of these distributions. Here
Latin Hyper Cube sampling has been used in which
the distributions of each failure time determinant are
divided into equal intervals and a sample value is then
randomly taken from each interval. The number of in-
tervals is equal to the number of iterations used and
here it is equal to 2500. This stratified approach allows
a more accurate recreation to be made of the distribu-
tions when using fewer iterations compared to a stan-
dard Monte Carlo technique.

Latin Hyper Cube sampling was carried out within
Excel using the @Risk Addin [17]. This Addin cre-
ates, at random, a number between 0 and 1 for each
failure time determinant highlighted above using a ran-
dom number generator. These can be considered as the
cumulative probabilities of observing each of the deter-
minants defined above. For variables w j1 these cumula-
tive probabilities are first converted into variables, z j1,
that follow a one parameter gamma distribution—that is
a gamma distributions with a scale parameters of 1 and
a shape parameters given by λ j1. w j1 is then given as

w j1 = λ−1
j1

[
ln(z j1 − ln

(
λ−2

j1

)]
. (9a)

Similarly, values for w2 and w3 were obtained as

w2 = λ−1
2

[
ln(z2 − ln

(
λ−2

2

)]
, (9b)

w3 = λ−1
3

[
ln(z3 − ln

(
λ−2

3

)]
(9c)

Repeating this process leads to a series of values
for each of the failure time determinants that have a
generalised log gamma distribution. Parameters b j1
and b j2, σ j1, d1, d2, σ2 and, α, β, and σ3 will be
estimated using maximum likelihood techniques and
so are asymptotically normally distributed with zero
means and various standard deviations. As such, values
for these variables can be obtained from a set of random
numbers between 0 and 1. These are the cumulative
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probabilities associated with these variables and their
associated standardised z values are therefore read off
from a standard normal distribution table. These Z
values are then converted into un standardised values
(i.e. values for b j1 etc) using the means and standard
deviations for each variable. When carrying out such
sampling any strong dependencies between b j1 and
b j2 need to be taken into account.

A distribution for the predicted failure time associ-
ated with a particular stress level can now be found.
When using the rupture strain relation a value for b j1,
b j2, σ j1, σ2, d1, d2, w j1 and w2 is sampled (using Latin
Hypercube sampling) from their respective distribu-
tions. The sampled values for b j1 and b j2, σ j1 and w j1
are substituted into Equation 2b, together with a value
for the required stress τ , to derive a value for ln(θ j ).
Then the sampled values for d1 and d2, σ2 and w2,
together with a value for the required stress τ , are sub-
stituted into Equation 4c to derive a value for εF . These
values for (θ j ) and εF are then substituted into Equa-
tions 4a and 4b and these equations are then solved
numerically to find a predicted failure time using the
four theta and six theta approaches. These calculations
are then repeated another 2499 times to give a total of
2500 failure times using the four and six theta tech-
niques. From such a large number of failure times a
simple histogram or empirical failure time distribution
can be constructed.

When using the Monkman–Grant relation a value
for b j1, b j2, σ j1, σ3, α, β, w j1 and w3 is sampled (us-
ing Latin Hypercube sampling) from their respective
distributions. The sampled values for b j1 and b j2, σ j1
and w j1 are substituted into Equation 2b, together with
a value for the required stress τ , to derive values for
ln(θ j ). Next these values for (θ j ) are substituted into
Equations 8a to 8d to obtain a prediction of the mini-
mum creep rate using four and six theta values. Then,
the sampled values for α, β, σ3 and w3 together with
the predicted ln minimum creep rate are substituted into
Equation 7a to derive a value for ln(tF ). These calcu-
lations are then repeated another 2499 times to give a
total of 2500 ln failure times using the four and six theta
techniques.

With 2500 values for time to failure and its determi-
nants it is possible to see which of these determinants
are the most important by carrying out a simple linear
regression. When using a rupture strain relation this
regression equation takes the form

ln(tF )i = δ0 + δ1εFi + δ j

5 or 7∑
j=2

ln(θ j )i + ζi . (10a)

where there are i = 1 to 2500 values for each vari-
able in Equation 10a and δ0, δ1 and δ j are parameters
to be estimated using the least squares technique—by
minimising the sum of squared errors − ∑2500

i=1 ζ 2
i . No-

tice that the determinants w j1, b j1, b j2, σ j1 have been
combined into each θ j value and values for d1, d2,σ2 and
w2 have been combined into each εF value. When using
the Monkman–Grant relation this regression equation
takes the form

ln(tF )i = δ0+δ1β1+δ2σ2i +δ j

6 or 8∑
j=3

ln(θ j )i +ξi . (10b)

The size of each δ value, together with the simple
correlation coefficient between log time to failure and
the right hand side variables in Equation 10a and 10b
is then an indication of the importance of each deter-
minant of failure time. Another indicator is the squared
partial correlation coefficient that measures the propor-
tion of the variation in ln time to failure, not explained
by all but one of the right hand side variables in Equa-
tions 10a and 10b which is explained by adding the re-
maining variable to Equations 7a and 7b. (See Thomas
[18] for more details on its derivation).

3. Modification of stochastic theta model
for fatigue data

When using the above theta model to analysis failure
under fatigue conditions, two approaches can be taken.
The first approach involves very little alteration to what
has been said above. Here crack growth is totally ig-
nored and instead strain is used. Even under a cyclical
stress at room temperature strain accumulation will oc-
cur. This strain can be analysed in exactly the same
way as a creep strain. This approach was adopted by
Bache and Evans [19] using a non stochastic four theta
approach, i.e. the above model with the variances for
b j1, b j2, σ j1, σ2, d1, d2, w j1 and w2 all equal to zero.

The second approach is to work with a plot of crack
growth per cycle, against the cyclic stress intensity fac-
tor and model this relationship using a four of six theta
equation,

da

d N
= θ1(1 − e−θ2�K ) + θ3(eθ4�K − 1) + ν, (11a)

or,

da

d N
= θ1(1 − e−θ2�K ) + θ3(eθ4�K − 1)

+ θ5(1 − e−θ6�K ) + ν, (11b)

where a is crack length, N is the number of stress cycles,
�K is the cyclic stress intensity factor and da/d N the
crack growth per cycle. This can be though of as a
generalisation of the Paris and Erdogan [20] equation

da

d N
= A�K m, (11c)

where A and m are constants. This equation however
is only valid over the steady state range. The number
of cycles, N0, to a given crack length, a0, can then be
worked out by solving

N0 =
∫ N0

0
d N

=
∫ a0

0

da

θ1(1 − e−θ2�K)+θ3(eθ4�K −1)+θ5(1−e−θ6�K)
,

(11d)
for a six theta approach. If the relationship between tests
conditions and crack length at rupture exists this can be
built into Equation 11d and the number of cycles to
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rupture predicted. To the author’s best knowledge this
approach has not yet been tried out.

4. Experimental procedures
The material used in this investigation is titanium al-
loy Ti-6.2.4.6 prepared as an ingot forged in the β-
phase at approximately 1238 K (the β transus is ap-
proximately 1223 K). The chemical composition of this
material (in wt%) was determined as 5.79 A1, 1.99 Sn,
3.94 Zr, 6.03 Mo, 0.06 Fe, 0.02 C, 0.1 O, 0.0035 Si and
Balance ∼ 82 Ti. The initial heat treatment schedule
used was 1173 K for two hours, followed by air quench-
ing. It was then reheated to 868 K, held for eight hours,
and finally air quenched. A second re-age for two hours
at 913 K, in air, was employed, which is a simulated
post weld heat treatment.

Twenty-three conventional creep specimens, from
material supplied by TIMET U.K. Ltd., of 3.8 mm dia-
meter, 25.4 mm gauge length and 3/8 inch BSF thread
were machined from the heat treated material and tested
in tension over a range of stresses at 773 K using seven
high precision uniaxial constant-stress machines fitted
with three zone furnaces. All machines had been cal-
ibrated to British Standards BSEN10002 (parts 1–5).
Details of such testing machines can be found in most
texts on creep [21]. Temperature was maintained along
the gauge length and with respect to time to better than
±0.5 K and the extensometers were capable of estab-
lishing creep strains to better than 10−5 and the creep
strain-time curves contained approximately 400 points.
Digital data collection was used in all cases.

The test matrix used is summarised in Table I. Fifteen
of the twenty-three specimens were placed on test at
773 K and a stress of 580 MPa, with the remaining
eight specimens being tested at 773 K and over the
stress range 900 MPa to 480 MPa—excluding 580
MPa. The creep properties contained in this table have
been reported (in part) elsewhere [22]. The test matrix
has fifteen specimens placed on test at a single con-
dition (773 K and 580 MPa) so that reliable estimates
can be made of the distributions of the failure time
determinants.

5. Results
5.1. Fitting creep curves using estimated

theta values
Table II shows the results obtained from estimating
Equations 1b and 1c for all the different test conditions
shown in Table I. As each theta value is quite small,

T ABL E I Isothermal (773 K) testing matrix showing the number of specimens tested on various machines and at various stresses

Stress
(MPa) Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6 Machine 7

900 1
800 1
700 1
620 1
600 1
580 3 3 3 3 3
560 1
535 1
480 1

and as the log of each theta value is linearly related to
stress, the natural log of these theta values are shown.
Note how the values for ln(θ1) to ln(θ4) are similar but
not exactly the same in each equation. Notice also the
substantial scatter in the ln(θ j ) estimates over the 15
tests at 580 MPa. Fig. 1a shows the different types of fit
given by Equations 1b and 1c to the experimental creep
curve obtained at 535 MPa. Note how the fit given by
Equation 1c, that uses six theta values, is better than
that obtained from using Equation 1b—especially over
the low strain range.

Fig. 1b gives a more complete view of the creep
curves obtained for the test matrix defined in section 4
above. In Fig. 1b, only two creep curves from the 15
available at the repeat stress of 580 MPa and 773 K are
shown and they correspond to the maximum and min-
imum rupture times at this test condition. Also shown
are some creep curves obtained at different stresses to-
gether with the experimental strain points around the
fitted curve (using six theta values) at 535 MPa.

Fig. 1b clearly reveals that any successful predic-
tion technique must be able to model both the changing
form of the creep curves with stress and the huge vari-
ability present in the form of the creep curves at an
unchanging stress (e.g. at 580 MPa). Creep curves ob-
tained at stresses other than 580 MPa fall within the
range of creep curves obtained at 580 MPa. Indeed this
latter property is so significant that it dwarfs the size of
νt , shown in Fig. 1b, by the small deviation of points
around the fitted creep curve at 535 MPa. So whilst each
θ j obtained from a single test is itself stochastic, this
variability is dwarfed by the variations in θ j observed
from test to test and this latter variability needs to be
modelled accurately if a reliable failure time distribu-
tion is to be obtained.

5.2. Theta projection equations
and theta distributions

Table III shows the results obtained from estimating the
parameters in Equation 2b through the maximisation
of Equation 3c for each θ j value. The top half of the
table shows the estimates made of Equation 2b when
four theta values were used to represent the form of the
creep curve and the bottom half of the table shows the
estimates made of Equation 2b when six theta values
were used. A number of interesting points emerge. Most
important is the realisation that each ln(θ j ) value has
a different shaped distribution. When using four theta
values, ln(θ1) and ln(θ3) are approximately normally
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T ABL E I I Theta values obtained by fitting Equations 1b and 1c using maximum likelihood

Stress (MPa) ln(θ1) ln· (θ2) ln· (θ3) ln· (θ4) ln· (θ5) ln· (θ6)

480 −4.97577 −11.8958 −2.74229 −16.6852 – –
−4.3863 −15.0179 −4.09226 −15.9257 −5.36426 −10.9049

535 −4.45792 −12.287 −3.3996 −15.1233 – –
−1.27161 −16.9244 −5.89481 −14.3884 −4.99867 −10.8389

560 −4.8652 −10.6883 −2.49825 −15.0035 – –
−5.06766 −12.0475 −2.85737 −14.7747 −5.53312 −9.44909

600 −4.58348 −11.4117 −3.02412 −15.0212 – –
−4.82096 −11.4797 −2.79317 −14.8472 −5.83451 −8.39626

620 −4.82947 −10.1097 −2.28751 −15.1903 – –
−3.56997 −13.2123 −4.04868 −13.6405 −5.21108 −9.25547

700 −4.50018 −10.5904 −2.84086 −14.1811 – –
−3.46257 −12.8063 −3.89631 −13.0229 −4.67338 −9.40116

800 −4.28971 −10.2048 −2.65126 −13.6029 – –
−3.36686 −11.0852 −3.23494 −12.0332 −4.65171 −8.13346

900 −3.92549 −9.30924 −2.02357 −12.6859 – –
−3.54816 −8.94833 −3.37953 −10.3995 −5.3255 −6.01207

580 −4.7111 −10.555 −2.7881 −14.7388 – –
−4.83688 −12.1075 −3.06287 −14.5778 −5.68021 −8.86962

580 −4.4062 −10.4604 −2.38075 −15.4334 – –
−4.59273 −12.6154 −3.0571 −14.9978 −5.00112 −9.22643

580 −4.57893 −10.5066 −2.94129 −14.8724 – –
−4.49706 −13.0563 −3.48434 −14.5933 −5.20086 −9.16617

580 −4.49786 −11.0961 −3.18508 −14.5875 – –
−4.16912 −13.3114 −3.83986 −14.2912 −5.22198 −9.65152

580 −4.46793 −12.1769 −3.58606 −14.7559 – –
−2.20154 −15.6269 −6.09075 −14.0073 −5.31718 −9.90936

580 −4.6969 −11.3583 −3.33171 −15.0849 – –
−4.49966 −13.4922 −4.15177 −14.678 −5.32799 −9.79919

580 −4.38082 −11.3964 −2.92662 −14.6829 – –
−3.77963 −13.7041 −3.6348 −14.3752 −5.13801 −9.5614

580 −4.28615 −11.9447 −3.48024 −14.801 – –
−3.14354 −14.7223 −4.97172 −14.2778 −4.90661 −10.4234

580 −4.61547 −11.8612 −3.41847 −15.0275 – –
−4.48553 −13.5605 −4.03772 −14.7327 −5.34175 −9.82821

580 −4.53832 −11.5053 −3.22329 −14.7588 – –
−4.69313 −12.9656 −3.5472 −14.5977 −5.25584 −9.38131

580 −4.69574 −11.6496 −2.70027 −15.8015 – –
−4.88315 −13.1942 −3.1691 −15.5003 −5.44831 −9.92599

580 −4.92178 −11.3377 −2.89925 −15.1794 – –
−4.8118 −13.2895 −3.47322 −14.8552 −5.49938 −10.2004

580 −4.80743 −11.4196 −2.57967 −15.4894 – –
−4.55649 −13.5283 −3.44358 −14.9718 −5.34637 −10.2095

580 −4.65537 −11.8031 −3.00716 −15.0792 – –
−4.82417 −13.1734 −3.26522 −14.9449 −5.36645 −10.0286

580 −4.49221 −12.1042 −2.91376 −15.0259 – –
−2.8128 −15.0291 −4.48566 −14.4165 −5.04114 −10.55

Estimates of Equation 1b are shown in the first line associated with each stress and Equation 1c in the second line.

T ABL E I I I Maximum likelihood estimates of the parameters in Equation 2b

ln(θ1) ln(θ2) ln(θ3) ln(θ4) ln(θ5) ln(θ6)

λ j1 0.05 −0.8 −0.01 1.282 – –
b j1 −5.9789 −17.733 −4.8291 −20.8808 – –
b j2 0.00237 0.01071 0.00327 0.01056 – –
σ j1 0.16852 0.48106 0.34811 0.18210 – –
λ j1 −1.826 0.6 1.826 0.1 0.7 −0.7
b j1 −6.8927 −20.4750 −3.1667 −21.8416 −6.1572 −15.5069
b j2 0.00385 0.01247 −0.00015 0.01252 0.00166 0.00959
σ j1 0.39159 0.98651 0.44153 0.36565 0.24015 0.48538

θ j is the j th theta relation (Equation (2b), λ j1 is the distributions shape parameter for each theta, σ j1 the distributions scale parameter for each theta
and β j1 are the distribution location parameters that relate each theta to stress.

distributed as shown by the λ j1 values being close to
zero. However, ln(θ2) has a long tail towards larger θ2
values (as shown by a large negative value for λ21)
whilst ln(θ4) has an even longer tail towards smaller θ4
values (as shown by a large positive value for λ41). This

is more clearly seen in Figs. 2a and 2b which show the
distributions for ln(θ2) and ln(θ4) respectively.

When using six theta values, ln(θ4) is approximately
normally distributed as shown by a λ41 value close to
zero. However, ln(θ2), ln(θ5) have similar generalised
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T ABL E IV Variance–covariance matrix for the parameters in Equation 2b

ln(θ1) ln(θ2) ln(θ3) ln(θ4)

b j1 b j2 σ j1 b j1 b j2 σ j1 b j1 b j2 σ j1 b j1 b j2 σ j1

b j1 0.252 −0.990 −0.001 0.767 −0.991 0.011 0.0522 −0.990 0.002 0.284 −0.989 0.137
b j2 −0.990 0.0004 0.0003 −0.991 0.0013 −0.089 −0.990 0.001 −0.001 −0.989 0.001 0.077
σ j1 −0.001 0.0003 0.025 0.011 −0.089 0.077 0.002 −0.001 0.051 0.137 0.077 0.034

ln(θ1) ln(θ2) ln(θ3)

b j1 b j2 σ j1 b j1 b j2 σ j1 b j1 b j2 σ j1

b j1 0.573 −0.988 0.113 1.500 −0.99 −0.083 0.762 −0.991 −0.912
b j2 −0.988 0.001 −0.059 −0.990 0.003 0.055 −0.991 0.001 0.136
σ j1 0.113 −0.059 0.076 −0.083 0.055 0.152 −0.192 0.136 0.081

ln(θ4) ln(θ5) ln(θ6)

b j1 b j2 σ j1 b j1 b j2 σ j1 b j1 b j2 σ j1

b j1 0.542 −0.99 −0.015 0.398 −0.992 0.083 0.788 −0.991 −0.025
b j2 −0.990 0.001 0.010 −0.992 0.001 −0.114 −0.991 0.001 0.056
σ j1 −0.015 0.010 0.054 0.083 −0.114 0.038 −0.025 0.056 0.077

The estimated standard for each parameter of Equation 2b are shown down the diagonals of each theta column and the correlation coefficients between
each parameter are shown in the off diagonals. The top third of the table is for a four theta analysis, the bottom two thirds for a six theta analysis.

(a)

(b)

Figure 1 (a) Uniaxial experimenttal creep curve at 535 MPa and 773 K for Ti-6.2.4.6 together with curves fitted using Equation 1b and 1c. (b) Uniaxial
creep curves at 773 K for Ti-6.2.4.6 (including the band of the creep curves obtained at a repeat stress of 580 MPa bounded by the maximum and
minimum rupture times).
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(a)

(b)

Figure 2 (a) Distribution for ln(θ2) when using Equation 1b to represent an experimental creep curve. (b) Distribution for ln(θ4) when using Equation 1c
to represent an experimental creep curve.

log gamma representations with moderate length tails
to the left of the peak point of their distributions. ln(θ1)
and ln(θ6) have long tails to the right of their peak points,
whilst ln(θ3) has an even longer tail to the left of its peak
point.

Equation 6b makes clear the fact that σ j1 is a strong
measure of the variability present between each ln(θ j )
estimate (indeed when λ j1 = 0 σ j1 are the standard de-
viations themselves). It can be seen from Table III that
when using four theta values, ln(θ2) has the most scatter
and ln(θ4) the least—this again is clearly visible from
a comparison of Figs. 2a and 2b. When using six theta
values, ln(θ2) has the most scatter and ln(θ4) and ln(θ5)
the least. Table IV shows the correlation coefficient be-
tween each of the parameters of Equation 2b. They sug-
gest that the coefficients b j1 and b j2 are very dependant,
whilst b j1 and σ j1 and b j2 and σ j1 are broadly indepen-
dent. This dependency must be taken into account when
deriving the failure time distributions below.

5.3. Estimation of failure criteria
and mean times to failure

The results of estimating the parameters in Equation 4c
are shown in the left hand side of Table V. Table VI
contains the standard deviations of these parameter es-
timates and as expected the parameter d2 is statistically

TABLE V Maximum likelihood estimates of the parameters in Equa-
tions 4c and 7a

εF ln(tF )

λ2 −0.02 λ3 0.9
d1 0.1494 α −0.4551
d2 0.00003 β −0.8869
σ2 0.0450 σ3 0.1404

εF is the rupture strain relation (Equation 4c), ln(tF) the log time to
failure in the Monkman–Grant relation (Equation 5a), λ2 and λ3 is the
distribution shape parameters for εF and ln(tF ) respectively, σ2 and σ3

the distribution scale parameters for εF and ln(tF ), d1 and d2 are the
distribution location parameters that relate εF to stress and α and β are
the distribution location parameters that relate ln(tF ) to the ln minimum
creep rate, εM

TABLE VI Variance–covariance matrix for the parameters in Equa-
tions 4c and 7a

εF ln(tF )

d1 d2 σ2 d1 d2 σ2

d1 0.0628 −0.0989 0.0269 0.06058 0.9987 −0.0673
d2 −0.0989 0.0001 −0.0167 0.9987 0.0349 −0.0528
σ2 0.0269 −0.0167 0.0067 −0.0673 −0.0528 0.0225

The estimated standard deviation for each parameter of Equations 4c
and 7a are shown down the diagonals of the εF and ln(tF ) columns and
the correlation coefficients between each parameter are shown in the off
diagonals.
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insignificant and the closeness of λ2 to zero suggests
that the distribution for ε f is also normal with a standard
deviation of σ2 = 0.045. A mean or expected time to
failure at a particular stress can now be obtained as
follows. Use Equation 6c together with the required
values shown in Table III to obtain an expected value
for each (θ j ). Next use Equation 6e together with the
required values shown in Table V to obtain an expected

(a)

(b)

(c)

Figure 3 (a) The ln failure time distribution at 580 MPa obtained by using the rupture strain failure criteria and Equation 1b to represent an
experimental creep curve. (b) The ln failure time distribution at 480 MPa obtained by using the rupture strain failure criteria and Equation 1b to
represent an experimental creep curve. (c) The ln failure time distribution at 580 MPa obtained by using the rupture strain failure criteria and Equation 1c
to represent an experimental creep curve.

value for εF . Then substitute these mean values for (θ j )
and εF into Equation 6h and solve numerically for an
expected failure time. A four theta approach can also be
used. A mean creep curve can be found by substituting
the mean values for (θ j ) and εF into Equation 6g.

As an illustration take the stresses 580 MPa and
480 MPa. Using four theta values, this approach pre-
dicts a mean failure time at 580 MPa of 1364 hours and
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(a)

(b)

(c)

Figure 4 (a) The ln failure time distribution at 580 MPa obtained by using the Monkman–Grant failure criteria and Equation 1b to represent an
experimental creep curve. (b) The ln failure time distribution at 480 MPa obtained by using the Monkman–Grant failure criteria and Equation 1b
to represent an experimental creep curve. (c) The ln failure time distribution at 580 MPa obtained by using the Monkman–Grant failure criteria and
Equation 1c to represent an experimental creep curve.

at 480 MPa 4614 hours. Using the six theta approach,
a mean failure time at 580 MPa of 1316 hours is pre-
dicted and at 480 MPa a life of 4664 hours is predicted.
The four and six theta approaches therefore give very
similar mean failure times and this will be further con-
firmed below.

The results of estimating the parameters in Equa-
tion 7a are shown in the right hand side of Table V. The

standard deviations shown in Table VI suggested that
the parameter β is statistically significant but α is not
and so is set equal to zero in all subsequent analysis. The
value of λ3 suggests that the distribution for ln(tF ) is
skewed to the left. A mean or expected time to failure at
a particular stress can now be obtained as follows. Use
Equation 6c together with the required values shown
in Table III to obtain an expected value for each (θ j ).
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(a)

(b)

(c)

Figure 5 (a) Sensitivity of ln time to failure to its determinants obtained when the rupture strain failure criteria and Equation 1b represent an
experimental creep curve. (b) Sensitivity of ln time to failure to its determinants obtained when the rupture strain failure criteria and Equation 1c
represent an experimental creep curve. (c) Sensitivity of ln time to failure to its determinants obtained when the Monkman–Grant failure criteria and
Equation 1b represent an experimental creep curve. (d) Sensitivity of ln time to failure to its determinants obtained when the Monkman–Grant failure
criteria and Equation 1c represent an experimental creep curve. (Continued.)

Next, substitute these mean values into Equations 8a
to 8d and solve, numerically in the case of a six theta
analysis, for the mean minimum creep rate. Then sub-
stitute this mean minimum creep rate prediction into
Equations 8e to obtain a mean ln time to failure.

Using four theta values this approach predicts a mean
failure time at 580 MPa of 1344 hours and at 480 MPa
a life of 4590 hours is predicted. Using the six theta
approach a mean failure time at 580 MPa of 1575 hours
is predicted and at 480 MPa a life of 5111 hours is
predicted.

When using four theta values, the two approaches
(using a rupture strain or the Monkman–Grant relation)
predict very similar mean times to failure. However,
when six thetas are used the Monkman–Grant approach
predicts a much higher mean value at the two stresses
shown. These numbers represent a prediction for the
mean life of this alloy when operating at these stresses
and temperatures under uniaxial conditions. They do
not represent a life expectancy of a titanium turbine
blade or disk because such components are subjected
to varying stresses and temperatures and to multiaxial
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(d)

Figure 5 (Continued).

loadings. Extending the theta model to deal with such
a situation is the next big challenge.

5.4. Monte Carlo derivation of some
empirical failure time distributions

Figs 3a–c show some distributions for the predicted
time to failure at various stresses under uniaxial load-
ing using the rupture strain failure criteria. They were
obtained in the way described in Section 2.4 above.
Fig. 3a shows the failure time distribution predicted
for a stress of 580 MPa derived using four theta val-
ues. Note that the failure time associated with the peak
point of this distribution is similar to the mean value
derived in the previous section. Of more interest how-
ever is the lower bound of this distribution showing that
there is only a 1% chance of failure before 14.36 log
seconds or 480 hours. When using six theta values this
1% percentile is estimated at 14.85 log seconds or 780
hours—Fig. 3c. Fig. 3b shows the failure time distribu-
tion at 480 MPa derived using four theta values. This
distribution shows that there is only a 1% chance of
failure before 15.57 log seconds or 1606 hours.

Fig. 4a shows the failure time distribution at 580 MPa
derived using four theta values and the Monkman–
Grant failure criteria. Of interest is the lower bound of
this distribution showing that there is only a 1% chance
of failure before 14.2 log seconds or 410 hours (com-
pared to the 480 hours obtained using the rupture strain
relation). When using six theta values this 1% percentile
is estimated at 14.07 log seconds or 360 hours—Fig. 4c.
Fig. 4b shows the failure time distribution at 480 MPa
derived using four theta values. This distribution shows
that there is only a 1% chance of failure before 15.41
log seconds or 1368 hours (compared to the 1606 hours
obtained using the rupture strain relation).

Finally Figs 5a–d identify the important determinants
of predicted times to failure using the stochastic theta
model. The values for δ have been standardised so that
a δ value of zero indicates that there is no significant
relationship between the ln time to failure and the po-
tential determinant associated with that δ value, whilst a
δ value of 1 or −1 indicates a 1 or −1 standard deviation
change in ln time to failure for a 1 standard deviation

change in the potential determinant associated with that
δ value. Figs 5a and b show that εF , ln(θ3) and ln(θ4) are
the major determinants of ln time to failure when using
a rupture strain as a failure criteria. Figs 5c and d show
that the slope of the Monkman–Grant relation, (β), to-
gether with ln(θ3) and ln(θ4) are the major determinants
of ln time to failure when using the Monkman–Grant
as the failure criteria.

6. Conclusions and suggestions
for future research

A number of conclusions can be drawn from the re-
sults shown above. First, there is substantial scatter in
the estimates made of ln(θ j ) at unchanging test condi-
tions and that the distributions for each ln(θ j ) are very
different—with only some of them being normally dis-
tributed. Secondly, the major determinants of time to
failure are ln(θ4) and rupture strain or ln(θ4) and the
slope of the Monkman–Grant relation. As such it is es-
sential to model the tertiary stages of creep correctly
if an accurate time to failure prediction is to be made.
Third, the empirical failure time distributions are not
normal and generally have a long tail reaching out to
higher failure times—although the failure distributions
are more symmetric when using the Monkman–Grant
rather than the rupture strain relation.

Finally, for Titanium 6.2.4.6 operating at 773 K and
under a constant uniaxial load of 580 MPa, a service life
of no more than 410 hours should be recommended. The
chances of failure over this time span is then 1% or less.
At a constant uniaxial load of 480 MPa and 773 K the
recommended service life is 1368 hours—again with a
1% or less chance of failure over this time span. This
technique can be used to obtain 1% percentile predic-
tions at any other stress or indeed a prediction corre-
sponding to a smaller chance of failure.

However, as the model stands, it can’t predict the life
of this alloy when used as turbine blades and disks.
This is because during take off, flight and landing these
components are subjected to varying stresses and tem-
peratures and the loads tend to be multi rather than
uniaxial. Hence possible areas of future research are to
apply the stochastic model to multiaxial creep test data
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and to build into the model the sum of damage accumu-
lated over periods of varying stresses. It would also be
of interest to apply the model to nonmetallic materials
and to fatigue data in the ways suggested in Section 3.
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